
Additional Investigations of Deep Bayesian Nonparametric Learning of Rules and
Plans from Demonstrations with a Learned Automaton Prior

Brandon Araki,1 Kiran Vodrahalli,2 Thomas Leech,1, 3

Cristian-Ioan Vasile,1 Mark Donahue,3 and Daniela Rus1

1CSAIL, Massachusetts Institute of Technology
2 Columbia University

3 MIT Lincoln Laboratory
araki@mit.edu, knv2109@columbia.edu, tfleech@mit.edu, cvasile@mit.edu, mark.donahue@ll.mit.edu, rus@csail.mit.edu

1 Nonparametric Bayesian Model
In the paper, we specify an approximation to the nonpara-
metric Bayesian model by assuming that the number of FSA
states is upper-bounded by 2P . We state here the actual non-
parametric model. Compared to the approximation in the pa-
per, we replace the finite Dirichlet-Categorical distribution
from which we draw F with a nonparametric equivalent. In
this model, α is the scaling parameter of the GEM distri-
bution. The GEM distribution returns a theoretically infinite
list of real numbers which can be thought of as weights on
positive integers. Such a list can be generated using the stick-
breaking process. We can use this list as the weights for an
infinite Categorical distribution, from which we can sample
F .

α ∈ R>0, β ∈(β1, . . .), γ ∈ (γ1, . . .)

θ ∼ GEM(α)

F ∼ Categorical(θ)

βF ∈ RF×P×F
>0 , γF ∈ RF × RF

>0

TMF |βF ∼ Dirichlet(βF)

RF |γF ∼ Normal(γF)

π := LVIN(TMF ,RF)

at|st−1, ft−1 ∼ π(st−1, ft−1)

st := T (at, st−1), pt := M(st)

ft|pt, ft−1, TMF ∼ Categorical(TMF (ft−1, pt))

2 Experiments & Results
We test our model on 7 different domains, only 3 of which
appear in the main paper. We present results from the other
four domains here. We also describe how we modified the
lunchbox TM.

2.1 Environments
Gridworld Domains The gridworld domains are simple
8×8 gridworlds with sequential goals. Gridworld1 has goals

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a and b (shown in Fig. 5a); Gridworld2 (Fig. 5b) adds goal
c, and Gridworld3 (Fig. 5c) adds goal d. The specification
of Gridworld1 is ♦(a ∧ ♦b) ∧ �¬o. Gridworld2’s speci-
fication is ♦(a ∧ ♦(b ∧ ♦c)) ∧ �¬o and Gridworld3’s is
♦(a ∧ ♦(b ∧ ♦(c ∧ ♦d))) ∧ �¬o. The results for Grid-
world1 in Table 1 show that LVIN achieves almost perfect
performance on the domain; the LSTM achieves a success
rate of 88.8% on the training data, which decreases to 64%
on the test data. Similar results hold for Gridworld2 and 3;
however, the LSTM performs much better on these domains.
This is likely because these two domains have fewer obsta-
cles than the Gridworld1 domain (the LSTM seems to strug-
gle to avoid randomly placed obstacles).
Dungeon Domain The dungeon domain is a 12 × 9 grid-
world and shows our model’s ability to learn complex se-
quential specifications. In this environment (Fig. 11) there
are 10 propositions: keys ka, kb, kc, kd that unlock doors
da, db, dc, and dd, respectively; and g for the goal and o for
obstacles. To progress to the goal, the agent must follow the
specification ♦g ∧ �¬o ∧ (¬da U ka) ∧ (¬db U kb) ∧
(¬dc U kc) ∧ (¬dd U kd) – it must first pick up Key A,
then go get Key D, then Key B, then Key C, before it can
access the room in which the goal is located. The results in
Table 1 show that whereas our model achieves a 100% suc-
cess rate on test data, the LSTM is completely incapable of
learning how to solve the environment, probably due to the
large number of steps required to complete the task (up to
60) and the relative complexity of the specification.

2.2 Interpretability
One of the main benefits of our model is that it learns an
interpretable model of the rules of an environment in the
form of a transition matrix (TM). The learned vs. true TMs
of all the domains are shown in Figs. 6, 9, 12, and 10.

To reiterate what was said in the main paper, the goal and
trap states are not shown to save space, and also because
their structures are trivial. The goal state consists of self-
transitions back to the goal state, and the trap state consists
of self-transitions back to the trap state. This is because they
are both end states.

Recall that the TM contains the probability of a transition
from a current state f to a next state f ′ given that a certain

Training Test
LVIN LSTM LVIN LSTM

Gridworld1
Set size 500 15000 3000 3000

Success Rate 99.80% 88.80% 99.97% 64.00%

Gridworld2
Set size 600 10000 1200 2000

Success Rate 99.50% 99.20% 99.33% 98.90%

Gridworld3
Set size 500 10000 1200 2000

Success Rate 100.0% 98.00% 99.99% 98.55%

Lunchbox
Set size 500 9000 1800 1800

Success Rate 99.60% 91.44% 99.94% 82.44%

Cabinet
Set size 550 6000 1800 1800

Success Rate 100.00% 93.60% 100.0% 89.58%

Driving
Set size 500 6000 1800 1800

Success Rate 100.0% 58.54% 100.0% 58.60%
Dungeon
Set size 800 6000 1800 1800

Success Rate 100.0% 0.00% 100.0% 0.00%

Table 1: Training and test performance of LVIN vs LSTM

proposition p is true. The TM of a given domain consists of
a set of matrices. Each matrix corresponds to a current state
f . Given a current state f and a proposition p, the column
associated with p gives the probability of transitioning to
each next state f ′. White represents 0 probability, and black
represents a probability of 1.

The learned TMs are represented somewhat differently.
Instead of showing probabilities, they show the weights of
the learned TM prior β̂F∗

. White corresponds to low weight
and black corresponds to high weight. We show the weights
because the weights of the TM prior give an indication of
how “certain” the prior is of each set of transitions. For many
(f, p) pairs, the model is very uncertain about what the next
state f ′ will be (perhaps because that transition never occurs
in the dataset), so the column will be mostly white because
the values in the prior are low.

The learned vs true TMs of the gridworld domains are
shown in Fig. 6. Inspecting the learned TM of Gridworld1
(Fig. 6a), we see that in the initial state S0, a leads to the
next state S1, whereas b leads back to S0. In S1, going to b
leads to the goal state G. In both states, going on an obstacle
o leads to the trap state T . Therefore simply by inspection we
can understand the specification that the agent is following.
Gridworld2 and Gridworld3 follow analogous patterns.

Most of the learned TMs match closely with their ex-
pected TMs. There are two exceptions – one is the driv-
ing domain, discussed in the main paper. The other is the
dungeon domain (Fig. 12), which instead of learning the in-

tended general rules (“Door A is off-limits until Key A is
picked up”) learns domain-specific rules (“pick up Key A;
then go to Door A; then pick up Key B; etc”). Crucially,
however, this learned TM is still easy to interpret. In the ini-
tial state S0, most of columns are blank because the model is
uncertain as to what the transitions are. The only transition it
has learned (besides the obstacle and empty state transitions)
is for Key A (ka), showing a transition to the next state. In
S1, the only transition occurs at Door A (da). Then Key D
(kd), Door D (dd), Key B (kb), Door B (db), Key C (kc),
Door C (dc), and finally the goal state g. So we can see by
inspecting the learned TM that the model has learned to go
to those propositions in sequence. Although this differs from
what we were expecting, it is still a valid set of rules that is
also easy to interpret.

2.3 Manipulability Experiments on Jaco Arm

Figure 1: The Jaco mobile arm platform opening a cabi-
net and packing a lunchbox following rules learned from
demonstrations.

To show how LVIN can be applied to the real world, we
implemented the algorithm on a Jaco arm. The experimental
setup is described in the main paper.

We modified two learned TMs – one from the lunchbox
domain and one from the cabinet domain. We call the origi-
nal lunchbox specification φl1. There are three modifications
– pick up only the sandwich first, then the banana (φl2), pick
up the burger first, then the banana (φl3), and pick up the ba-
nana, then either the sandwich or the burger (φl4). (We also
modify the learned cabinet TM – these results are discussed
in the main paper.)

In the lunchbox domain, a indicates that the sandwich has
been picked up, b that the burger has been picked up, and
c that the banana has been picked up. d indicates that the
robot has dropped whatever it was holding into the lunch-
box. Fig. 4a shows the modifications made to the lunchbox
TM to cause it to pick up only the sandwich, and not the
burger, first. In order to achieve this, in S0 we set b (the
burger proposition) to transition back to S0 rather than to
S1, indicating to the agent that picking up the burger does
not accomplish anything. With this change, the agent will
only pick up the sandwich (a). Fig. 4b shows the analo-
gous changes to make the agent pick up only the burger first.
Fig. 4c shows how to make the agent pick up the banana first,
and then either the sandwich or burger. In order to do this,

we first modify S0 so that picking up the banana (c) leads
to the next state, whereas picking up the sandwich or burger
(a or b) leads back to S0. This change makes the agent pick
up the banana first. S1 does not need to be modified; the
agent should still put whatever it is holding into the lunch-
box. We then modify S2 so that this time, picking up the
banana leads back to S2, whereas picking up the sandwich
or burger leads to the next state, S3. With these changes, the
agent will not pick up the banana but will instead pick up
either the sandwich or burger.

Each specification was tested 20 times on our experimen-
tal platform; as shown in Table 2 there were only a few fail-
ures, and these were all due to mechanical failures of the
Jaco arm, such as the manipulator dropping an object or los-
ing its grasp on the cabinet key.

Lunchbox Cabinet
φl1 φl2 φl3 φl4 φc1 φc2

Successes
out of 20 20 20 19 19 20 17

Table 2: Performance of Jaco robot in executing learned
lunchbox and cabinet tasks

a

o o

b

S0 S1

Trap Goal

a ^ !o

b ^ !oo

o

T !o

!b ^ !o!a ^ !b ^ !o

×

a

o o

b

S0 S1

Trap Goal

a

o o

b

a

o o

b

a

o o

b

Figure 2: An illustration of how an MDP and an FSA create a product MDP. The MDP is a 2D gridworld with propositions
a, b, and o. The FSA describes the rules “go to a, then b, and avoid o. The resulting product MDP represents how these rules
interface with the 2D gridworld.

𝑇𝑀𝐹

𝐹θ 𝛼

 𝛽

 γ R

𝑓0 𝑓1 𝑓2

𝑠1 𝑠2 𝑠3

. . . 𝑓𝑇−1

𝑠𝑇

𝑓𝑇

Recurrent Transitions
𝑓𝑡 = 𝐻(𝑇𝑀𝐹 , 𝑀, 𝑠𝑡 , 𝑓𝑡−1)

𝐹 𝑀

𝑁

Figure 3: The graphical model of the variational approximation.

a b c d o e

S0

S1

S2

S3

G

T

S0

(a) φp1 → φp2 (pick up only
sandwich, then banana)

S0 a b c d o e
S0

S1

S2

S3

G

T

(b) φp1 → φp3 (pick up only
burger, then banana)

S0 S2a b c d o e
S0

S1

S2

S3

G

T

a b c d o e

(c) φp1 → φp4 (pick up banana, then sandwich/burger)

Figure 4: Modifications to the learned TM of the lunch-
box domain so that the agent follows the new specifications.
Deleted values are marked in red, and added values in green.

(a) Gridworld1 domain

(b) Gridworld2 domain

(c) Gridworld3 domain

Figure 5: The gridworld domains

S0 S1
a b o e

S0

S1

G

TL
V

IN
T

R
U

E

a b o e

S0

S1

G

T

(a) Gridworld1 TM
S0 S1

a b c o e

S0

S1

S2

G

T
L

V
IN

T
R

U
E

a b c o e a b c o e

S2

S0

S1

S2

G

T

(b) Gridworld2 TM
S0 S1

a b c d o e

S0

S1

S2

S3

G

T

L
V

IN

S2

a b c d o e a b c d o e a b c d o e

S3

S0

S1

S2

S3

G

T

T
R

U
E

(c) Gridworld3 TM

Figure 6: Learned vs true TMs for the gridworld domains

(a) Lunchbox domain

(b) Cabinet domain

Learned

Agent

Work

Zone

Green

Light

Red

Light

Left

Lane

Goal

Obstacle

Figure 8: Driving domain

S0 S1
a b c d o e

S0

S1

S2

S3

G

T

L
V

IN
T

R
U

E

a b c d o e a b c d o e a b c d o e

S2 S3

S0

S1

S2

S3

G

T

(a) Lunchbox TM
S0 S1

c
c

g
k

l
o o

o
p

u
c

u
o Ø

S0

S1

S2

S3

S4

G

T

L
V

IN
T

R
U

E

S2 S3
c
c

g
k

l
o o

o
p

u
c

u
o Ø

c
c

g
k

l
o o

o
p

u
c

u
o Ø

c
c

g
k

l
o o

o
p

u
c

u
o Ø

S0

S1

S2

S3

S4

G

T

c
c

g
k

l
o o

o
p

u
c

u
o Ø

S4

(b) Cabinet TM

Figure 9: Learned vs. true TMs for the lunchbox and cabinet
domains

S0

S1

S2

G

T

L
V

IN

S0

h r l g o e h r l g o e h r l g o e

S0

S1

S2

G

T

T
R

U
E

S1 S2

Figure 10: Learned vs. true TMs for the driving domain

Figure 11: Dungeon domain

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

S0 S1 S2 S3 S4

S5
d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

S6 S7 S8

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

d
a

d
b

d
c

d
d g

k
a

k
b

k
c

k
d o e

S0 S1 S2 S3 S4

L
V

IN
L
V

IN
T

R
U

E

Figure 12: Learned vs. true TM for the dungeon domain

(a) Gridworld1 domain (b) Gridworld2 domain

(c) Gridworld3 domain (d) Lunchbox domain

(e) Cabinet domain (f) Driving domain

(g) Dungeon domain

Figure 13: Loss in terms of an estimate of the ELBO over epochs for each domain.

Domain Runtime (hours)

Gridworld1 1.35
Gridworld2 4.04
Gridworld3 5.89
Lunchbox 3.94
Cabinet 33.24
Driving 13.77
Dungeon 179.97

Table 3: Runtimes of the seven domains.

Variable Interpretation

α ∈ R2P
>0 Dirichlet prior for number of FSA states F

β̄ ∈ (β1, . . . , β2P)
The bar over β̄ indicates that it is a list. The list is over TM priors for a
given number of FSA states.

βi ∈ Ri×P×i

The superscript i represents the number of FSA states. βi is the prior
for the transition matrix TM. It is a collection of i× P Dirichlet priors
of i parameters each. In other words, given current FSA state f and
proposition p, TM(f, p) returns a distribution over possible next FSA
states.

γ̄ ∈ (γ1, . . . , γ2P)
The bar over γ̄ indicates that it is a list. The list is over reward function
priors for a given number of FSA states.

γi ∈ Ri × RF
>0

The superscript i represents the number of FSA states. γi is the prior
for the reward function R drawn from a Normal distribution. The first
set of i real numbers defines the means for each FSA state; the next set
of positive real numbers defines the variance for each state.

θ ∼ Dirichlet(α) Distribution over number of FSA states F .

F ∼ Categorical(θ) Number of FSA states.

TMF |βF ∼ Dirichlet(βF) The transition matrix TM given F FSA states.

RF |γF ∼ Normal(γF)
The reward function given F FSA states. Note that in this paper, we
assume that the reward function is only a function of current FSA state
f and not low-level states s or actions a.

π := LVIN(TMF ,RF) π represents the policy found using the LVIN algorithm.

at|st−1, ft−1 ∼ π(st−1, ft−1) The action taken at time t.

st := T (at, st−1)
st is the low-level state (x, y) at time t after taking action at. T is the
deterministic low-level transition function.

pt := M(st)

pt is the proposition that is true at time t. In this work, a proposition is
true if the agent is on top of a grid point (x, y) that is associated with
the proposition. Proposition map M is the function that associates each
low-level state s with a single proposition p.

ft|pt, ft−1, TMF ∼ Categorical(TMF (ft−1, pt)) ft is the FSA state at time t.

Table 4: Notation used in the definition of the Bayesian model.

Variable Interpretation

α̂
Variational parameter/Dirichlet prior for number of FSA states F .
Equivalent to α.

ˆ̄β List of variational parameters/Dirichlet priors for TM. Equivalent to β̄.

β̂i Variational parameter/Dirichlet prior for TM given i FSA states. Equiv-
alent to βi.

ˆ̄γ
List of variational parameters/Normal priors for the reward function.
Equivalent to γ̄.

γ̂i
Variational parameter/Normal prior for reward function given i FSA
states. Equivalent to γi.

sit Low-level state (x, y) at time t for trajectory i

ait Action at time t for trajectory i

di = 〈(si0, ai0), . . . , (siTi
, aiTi

)〉 Trajectory i, composed of state-action pairs up to time step Ti.

D = 〈d0, . . . , dN 〉 Dataset of N trajectories.

f i,Ft
The current FSA state at time t for trajectory i given number of FSA
states F

Table 5: Additional notation used in the definitions of the joint likelihood function and the variational approximation.

